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Abstract 

This paper applied LDA and regression analysis to conduct a lead-lag analysis to identify 

different topic evolution patterns between preprints and papers from arXiv and Web of Science 

(WoS) in astrophysics over the last twenty years (1992-2011). Fifty topics in arXiv and WoS 

were generated using an LDA algorithm and then regression models were used to explain four 

types of topic growth patterns. Based on the slopes of the fitted equation curves, the paper 

redefines the topic trends and popularity. Results show that arXiv and WoS share similar topics 

in a given domain, but differ in evolution trends. Topics in WoS lose their popularity much 

earlier and their durations of popularity are shorter than those in arXiv. This work demonstrates 

that open access preprints have stronger growth tendency as compared to traditional printed 

publications. 

Keywords: lead-lag, topic evolution pattern, preprint, publication  
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A Lead-Lag Analysis of the Topic Evolution Patterns for Preprints and Publications 

 

The “publish or perish” mantra reflects the fierce competition in scholarly 

communication. Being the first person to claim new ideas, new methods, or new discoveries is 

critical in science. Scholarly communication, especially through formal channels, plays a crucial 

role in this process. However, over the last decade the Internet and various Web 2.0 technologies 

have had an impact on the more traditional scholarly communication network of journals and 

conferences by enabling faster and broader dissemination through a variety of communicative 

channels. Researchers are sharing their initial and innovative thoughts through personal blogs, 

tweets, Facebook comments, online repositories, and online discussion groups. These ideas and 

drafts can be downloaded, discussed, tweeted/retweeted, forwarded, commented, and tagged 

through a variety of channels including arXiv, Twitter, Mendely, Citeseer, and CiteULike, to 

name just a few. This informal scholarly communication significantly speeds up the process of 

knowledge dissemination.  

arXiv is an online repository of digital preprints from a number of fields – most notably 

from physics, mathematics, and computer science. Since its creation by Paul Ginsparg in 1991, 

arXiv has become central to the diffusion of research in these fields. arXiv is currently one of the 

largest open access self-archiving systems and hosts over 0.9 million digital preprints in science 

covering physics, mathematics, computer science, quantitative biology, statistics, and 

quantitative finance. This online archiving system, with the policy of allowing every author to 

submit his or her research output, offers the ideal platform to swiftly propagate knowledge. 

Before manuscripts enter lengthy peer-review processes that can take anywhere from 3 months 

to 1.5 years (depending on different journals or disciplines), they can be read, criticized, or even 
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cited by other scholars. In addition, arXiv has become one of the major open access venues for 

an ever-growing number of researchers who want to reach a wider audience, but who do not 

have the means to pay extremely high open access fees to journals. Thus, in its role as a digital 

repository, arXiv allows for the dissemination of works in various stages of their life-cycle: from 

true preprints to post-prints.  

Quite a bit of interest has been generated regarding the ways in which arXiv has 

potentially accelerated knowledge transfer and changed scholarly communication. While these 

works are useful, few studies have analyzed the difference between topic evolution in informal 

scholarly communication (i.e., preprints) and formal scholarly communication (i.e., publications). 

By analyzing the topic evolution (e.g., topic popularity and duration of topic popularity) patterns 

in formal and informal scholarly communication, this work can help us better understand 

whether informal scholarly communication (e.g. arXiv) can stimulate fast knowledge transfer. In 

this paper we applied LDA and regression analysis to conduct a lead-lag analysis and to identify 

different topic evolution patterns for preprints and papers in astrophysics for the last twenty years 

(1992-2011). 

 

Literature Review 

Preprint Analysis 

Shuai, Pepe and Bollen (2012) analyzed the scientific community’s responses to 4,606 

preprints submitted to arXiv using the number of downloads, mentions on Twitter, and citations 

in scholarly articles. The authors studied the delay and time span of article downloads and 

Twitter mentions to understand the temporal difference. Through regression and correlation tests 
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they found that Twitter mentions and arXiv downloads follow distinct temporal patterns, with 

Twitter mentions having shorter delays and narrower time spans.   

A more recent large-scale analysis of the relationship between pre-prints and papers in 

terms of coverage and citation was investigated by Lariviere et al. (2014). This studied examined 

the overlap between papers found on arXiv and WoS (and vice versa), the elapsed time between 

submission of a preprint and publication of the matching journal article, and aging effects in 

citations for both genres. The study found that few disciplines are widely represented on arXiv, 

and even for those that are represented there remains a large share of publications in WoS that 

are not found on arXiv. Furthermore, the study found that the arXiv versions have lower citation 

rates than published papers and that citations to these versions decline precipitously following 

publication in the journal of record. 

 

Temporal Pattern Analysis 

Researchers have performed temporal analysis on a variety of corpora, such as news and 

email datasets, and have refined methods to identify topics in corpora using the combined 

approach of content analysis and time-series analysis (Chatfield, 2003). By analyzing when 

documents were written and by whom, Shaparenko, Caruana, Gehrke and Joachims (2005) 

developed a method to identify the most influential documents and authors in a collection. The 

authors applied k-means clustering to extract clusters of words from documents and identified 

the clusters using five significant words appearing nearest to the cluster centroid. They plotted 

the changes in term frequency of these five words along with different time durations and 

developed a lead/lag index based on the assumption that if one document spawns a great deal of 

follow-up work that uses similar vocabulary, then that document is very influential. The lead/lag 
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index measures whether a document is a leader or a follower. The authors compared their results 

with citation counts and found that they were successful in identifying papers that contained new 

and influential ideas; in some cases they were able to identify works that were not identified by 

citation analysis alone.  

 Swan and Jensen (2000) developed TimeMines using robust, flexible techniques to 

determine significant keywords in documents and to judge their temporal significance in the 

context of a corpus. The authors assumed that a simple statistical ranking of term occurrence and 

co-occurrence can identify and group relevant documents into coherent time-dependent stories. 

Their approach determined whether the possibility of seeing a word/phrase/named entity varied 

during different time slots.  They tested their approach on a corpus of CNN news documents and 

identified temporal topics.  

Another statistical method labeled Temporal Text Mining (TTM) was introduced by Mei 

and Zhai (2005) and was used to identify temporal patterns through the discovery of latent topics 

from text, to construct an evolution graph of topics, and to analyze life cycles of topics. The 

authors constructed a topic evolution graph by calculating the KL-divergence of a word vector 

containing two pair of topics from different time spans. They applied their method to a document 

sets containing news about tsunami events and abstracts from the Knowledge Discovery and 

Data Mining (KDD) conference proceedings and were able to summarize the complete 

evolutionary theme patterns in a given text stream. Their evolution graph can reveal how topics 

change over time and how one topic in one time period has influenced other topics in later 

periods. They used the Hidden Markov Model (HMM) to analyze the life cycle of each topic and 

discovered globally interesting topics and computed the strength of a topic in each time period. 
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This analysis allowed the authors to identify the strength variation trends of various topics and to 

compare the relative strengths of different topics over time. 

Kleinberg (2003) developed a method to robustly and efficiently identify bursts that are 

characterized by topics that appear, grow intensely, and then fade away. A burst, described as 

containing one or more sub-intervals signifying a dying and rebirth, can be represented as a tree 

in order to capture the hierarchical structures that are implicit in a corpus. The author performed 

an analysis of his own emails relating to proposal writing and identified inferred hierarchical 

structures that clearly identified an intent letter phase, pre-proposal submission phase, and full-

proposal submission phase.  

Shi, Nallapati, Leskovec, McFarland and Jurafsky (2010), on the other hand, conducted 

topical lead-lag analysis on papers and funding proposals to study whether research grants come 

before publications or vice versa. They proposed a general method for lead-lag estimation based 

on the LDA (Latent Dirichlet Allocation) model and time series analysis to determine topics 

discussed across time in 20,000 grant proposal abstracts and half a million computer science 

research paper abstracts. They found that the lead-lag of research papers, with respect to research 

grants, is topic specific. The authors also found that Security and Cryptography research papers 

lead grant proposals by two years, while grants related to the topic of Neural Network lead 

research papers by three years.  

 

Topic Analysis 

The goal of topic modeling algorithms is to capture topics from a corpus automatically by 

using the observed words in documents to infer the hidden topic structure (e.g., document topic 

distribution, and word topic distribution). The number of topics is usually decided by perplexity, 
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which can be heuristically set ranging from 20 to 300 (Blei, 2012). The inference mechanics in 

topic models are independent of languages and contents; they capture the statistical structure of 

language used to represent thematic content. LDA approximates its posterior distribution by 

using inference (e.g., Gibbs sampling) or optimization (e.g., variational methods) (Asuncion, 

Welling, Smyth & Teh, 2009). Blei and Lafferty (2006) proposed a dynamic topic model to 

capture the evolution of topics in a sequentially organized set of documents based on an 

assumption that each year’s articles arise from a set of topics that evolved from last year’s topics. 

They extended classical state space models to specify a statistical model of topic evolution, and 

developed efficient approximate posterior inference techniques to determine the evolving topics 

from a sequential collection of documents. 

In another work, Mann, Mimno and McCallum (2006) applied topic modeling methods to 

300,000 computer science publications to provide topic based impact analysis. They extended 

journal impact factor measures to topics and introduced three topic impact measures: topical 

diversity (i.e., ranking papers based on citations from different topics), topical transfer (i.e., 

ranking papers based on citations from outside of their own topics), and topical precedence 

(ranking papers based on whether they are among the first to create a topic). They developed 

Topical N-Grams LDA using phrases rather than words to represent topics. Gerrish and Blei 

(2010) proposed the document influence model (DIM) based on the dynamic LDA model to 

identify influential articles without using citations. Their hypothesis was that the influence of an 

article on the future is corroborated by how the language of its field changes subsequent to its 

publication. In other words, an article with words that contribute to the change in word 

frequencies will have a higher influence score. They applied their model on three large corpora 

and their influence measurement significantly correlates with the article’s citation counts.  
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Liu, Zhang and Guo (2012) applied Labelled LDA on full-text citation analysis to 

enhance traditional bibliometric analysis. Ding (2011b) combined topic modeling and path-

finding algorithms to study scientific collaboration and endorsement in the field of information 

retrieval. The results show that productive authors tend to directly coauthor with, and closely cite, 

colleagues sharing the same research topics, but they do not generally collaborate directly with 

colleagues working on different research topics. Ding (2011c) proposed topic-dependent ranks 

based on the combination of a topic model and a weighted PageRank algorithm. The author 

applied the Author-Conference Topic (ACT) model to extract topic distribution for individual 

authors and conferences, and added this as the weighted vector to the PageRank algorithm. The 

results demonstrated that this method is able to identify representative authors with different 

topics at different time spans.  

Later on, Ding (2011a) applied author topic model to detect communities of authors and 

compared this with traditional community detection methods (that are usually topology-based 

graph partitions) on coauthor networks. The results showed that communities detected by the 

topology-based community detection approach tend to contain different topics within each 

community, and communities detected by the author topic model tend to contain topologically 

diverse sub-communities within each community. Natale, Fiore and Hofherr (2012) examined 

the aquaculture literature using bibliometrics and computational semantic methods including 

latent semantic analysis, topic modeling, and co-citation analysis to identify main themes and 

trends. Song, Kim, Zhang, Ding and Chambers (2014) adopted Dirichlet Multinomial Regression 

(DMR)-based topic modeling technique to analyze the overall trends of bioinformatics during the 

periods between 2003 and 2011 and found that the field of bioinformatics had undergone a 

significant shift to co-evolve with other biomedical disciplines. 
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LDA can be applied in any field where texts are the main data format, but there are 

challenges with using LDA. First, labeling topics can be done in different ways (Mei, Shen & 

Zhai, 2007). LDA typically uses the top ranked keywords with high probabilities for each topic 

to label that topic, but such labels can be hard to interpret because they are sometimes 

contradictory. For example, because LDA uses soft clustering one keyword can appear in more 

than one topic and some topics can have very similar labels. The question that arises is how to 

provide a meaningful label for each topic automatically. Evaluating LDA remains another major 

challenge (Chang, Boyd-Graber, Gerrish, Wang & Blei, 2009) because LDA is an unsupervised 

probabilistic model and the generated latent topics are not necessarily semantically meaningful. 

LDA assumes that each document can be described as a set of latent topics, which are multi-

nominal distributions of words. Chang et al. (2009) found that models which achieve better 

perplexity often generate less interpretable latent topics. By using Amazon Mechanic Turk, the 

authors found that humans appreciate the semantic coherence of topics. They recommended 

incorporating human judgments into the model-fitting process because it can increase the 

thematic meanings of topics. Evaluation of LDA is highly subjective to different applications.  

Studies in temporal pattern analysis focused on developing methods or algorithms to 

identify topics in different corpora by considering their content and temporal features, while 

researches in topic analysis extended or revised the current topic modeling algorithms to capture 

the dynamic changes of topics. Few studies have compared topic evolution of research articles 

from the same domain but that were published in different (i.e., formal or informal) channels, 

especially popularity of topics and duration of popularity of topics between these formal and 

informal channels. 
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Method 

Data 

We used two major sources of data: arXiv and Web of Science (WoS). Data were 

crawled from arXiv using the astrophysics category. In arXiv the astrophysics category includes 

the following six subfields: cosmology and extragalactic astrophysics, earth and planetary 

astrophysics, galaxy astrophysics, high energy astrophysical phenomena, instrumentation and 

methods for astrophysics, and solar and stellar astrophysics. arXiv started to host astrophysics 

preprints in April 1992. We collected 117,913 astrophysics preprints from 1992 to 2011. For 

each preprint, year, title, author, abstract, category and DOI were collected. To distinguish the 

arXiv preprints from postprints, we searched these preprints in WoS and removed those which 

were published in arXiv later than WoS. In WoS, astrophysics was listed as one of the WoS 

subject categories. All papers in different document types were collected from this subject 

category for the period of 1992-2011, resulting in a total of 166,191 research articles total. For 

each document from WoS, year, title, and author information were collected. 

 

Latent Dirichlet Allocation Modeling  

We first used Latent Dirichlet Allocation (LDA) to capture the topical features of nodes 

by postulating a latent structure for a set of topics linking words and documents. The LDA 

method has been reliable for detecting multi-nominal word distribution of topics (Blei, Ng & 

Jordan, 2003). After the success of the LDA model, the basic model has been extended to 

various levels. The Author-Topic model proposed by Rosen-Zvi, Griffiths, Steyvers, and Smyth 

(2004) depicts the content of documents and the interests of authors simultaneously. Later, Tang, 

Jin and Zhang (2008) extended LDA to reveal the topic distribution of authors, conferences, and 
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Where  is the number of times that a topic z has been associated with a document d, 

and  is the number of times that a word  has been generated by a topic z. The model can be 

explained as: to write a paper, an author first decides topics and then uses words that have a high 

probability of being associated with these topics to write the article.  

LDA was chosen because it clusters words, documents, authors and other related entities 

based on latent topics. It provides a mathematical grounding for latent topics so that it is not 

susceptible to severe overfitting, in contrast to other methods (e.g., Probabilistic Latent Semantic 

Indexing) that are more susceptible (Blei, Ng, & Jordan, 2003). Results from LDA are easy to 

interpret and do not require expert judgment to label clusters which is a norm for classic co-

occurrence-based methods (e.g., co-citation or co-word analysis). Furthermore, LDA provides an 

opportunity to examine the research landscape of domains at a more granular level. This level of 

granularity is typically unattainable through co-occurrence-based methods because of the 

complexity of densely connected co-occurrence relations. Limitations of the LDA model are 

largely attributed to its assumptions (Blei, 2012). For instance, the model does not consider the 

orders of the words in a document and the orders of documents in a data set, and assumes that the 

number of topics is known and fixed. In reality, however, text corpora may not fit precisely into 

these assumptions and the performance may be compromised. Another limitation of LDA is that 

the number of topics to be extracted should be decided beforehand, which is usually based on 

perplexity. Labeling and judging the quality of topics can only be empirically evaluated. 

Solutions to relax these assumptions have been provided by Blei (2012). 

The Stanford Topic Modeling Toolbox (Stanford TMT: 

http://nlp.stanford.edu/downloads/tmt/tmt-0.4/) was used to perform the topic modeling. Stanford 

TMT has a built-in feature to filter out uninformative words from the text corpus. The following 
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data preprocessing was implemented: (1) title words that have less than three letters were 

removed from titles; (2) 30 most frequently occurred words were removed from titles; (3) those 

words that occurred in less than three publications were removed; (4) publications whose titles 

have less than three words were removed from the data set; and finally, (5) the number of topics 

was set as 50.  

 

Regression Modeling  

The dynamic patterns of lead-lag are analyzed by regression modeling. Time T was 

treated as the independent variable, while the number of publications in arXiv and WoS were 

treated as the dependent variables. Thus, 1992 was counted as the first year (i.e. t=1), 1993 as the 

second year (i.e. t=2), and so on. 

Weierstrass approximation theorem is widely used to approximate the curve of any 

continuous function. It is defined that for any given closed interval [a,b], there must be a 

polynomial function which can be uniformly approximated (Stone, 1948). Uniform 

approximation is equal to uniform convergence that converges independent of x. For example, 

the number of publications related to one topic along different years can be viewed as a 

continuous function. The curve of this function can be approximated using Weierstrass 

approximation theorem stating that for any given time period [t-1, t] there exists a polynomial 

function that can be uniformly converged. Curvilinear regression is polynomial regression that 

fits for applications that do not have linear relations, meaning that they have curves and not 

straight lines. In curvilinear regression, usually an intrinsic linear model is assumed and data are 

fitted to this model using polynomial regression (Cohen, et al., 2013). In this article, the number 

of publications in WoS and the number of preprints in arXiv along the years can be viewed as 
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curves which can be modeled by a continuous function. This function can be represented as a 

polynomial with independent variables , , , … . Curvilinear regression from Stata SE 

11.2 was applied to fit the curves.  

According to the Weierstrass Approximation Theorem, if f is a continuous real-valued 

function on [a, b] and if any ε>0 is given, then there exists a polynomial p on [a, b] such that 

| |  for all x in [a, b]. This can be interpreted as any continuous function on a 

closed and bounded interval can be uniformly approximated on that interval by polynomials to 

any degree of accuracy,  If we make x=t, then the number of publications in WoS and arXiv 

would be the functions of t, i.e. yWoS=f(t, , ^), yarXiv=f(t, , ^)(t=1, 2, ^, 20). If we make that 

decision, however, then we run into a non-stationary problem (i.e., the data may follow some 

trends whose joint probability distribution will change when time changes and this might result 

in spurious or nonsensical regression). Because the differences of (i>1) will always have the 

upward trend while WoS and arXiv are integrated of order 1 (i.e. data from WoS and arXiv will 

be stationary after difference for one time, notated as I(1)), then the difference between the 

publications of two consecutive years in each topic will remain stable. Meanwhile, (i=1, 2, ^, 

20) will grow rapidly and this might lead to the coefficients of	 that are very small, but 

important.  

Considering the above scenario, we made x=ln(t). Then  would be I(1), which meant 

that there might be a cointegrated relationship between dependent variables and independent 

variables. If it was true, we could do the regression modeling if the cointegrating test proved our 

regressions to be correct. Meanwhile, we use lni(t) to reduce the value of . 

After the selection of dependent and independent variables, we must decide the power m 

of the polynomial. Generally, the power of polynomial should be at least bigger than the number 
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of extreme points of the curve. However, usually we cannot know the exact number of extreme 

points of the curve. Thus, the choice of m is partly subjective. Generally, most publications’ 

fitted curves have no more than 4 extreme points, therefore we can make the power 5. Then, 

our original model would be: 

	 	∑ ln                                            (1) 

Here, the Y-intercept  indicates the number of publications in the first year (t1=1992), and  

represents the slopes of the curve. Because arXiv’s data starts from 1992 and WoS data begins 

earlier than 1992, then we can infer that  in equations of arXiv would be close to zero, while 

not in WoS. 

By computing the fitting results using regression algorithm with the following steps, we were 

able to get the fitted equations and fitted curves for the data.  

1. Set an appropriate significant level of 0.05. 

2. Fit the equation (1) by ordinary least squares (OLS). 

3. If all the variables pass the test, then stop, otherwise, do step4. 

4. Select the variable which has the lowest significant level, drop it. Then fit the 

new equation by OLS again. 

5. Repeat step 3 and step 4, until all variables pass the test. 

 

Results 

Overview  

The LDA model was applied to articles in astrophysics collected from WoS (166,191) 

and arXiv (117,913) for the last 20 years (1992-2011). Fifty topics were extracted using the LDA 

model. The 50 topics of arXiv were matched to the 50 topics of WoS. Table 1 shows these 50 
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topics. Each topic was labeled using the top five ranked words (i.e., words with high probability 

in this topic). The extracted 50 topics demonstrate the major research topics in astrophysics 

including: astrophysical processes (e.g., blackhole radition, radiative transport, gravity, and star 

structure), stellar physics (e.g., stellar evolution, chemical dependency, white dwarfs, neutron 

stars, and black holes), interstellar medium (e.g., heating, gas dynamics, magnetic fields, and 

shocks), cosmology (e.g., models, dark matter, inflation, and accelerating), and galaxies (e.g., 

spiral, disk, surface, Milky Way, and density waves). 

Table 1. Fifty Topics of Astrophysics in arXiv and WoS 

Topic 00 Blackhole-massive-accretion-binaries-disk Topic 25 dark-matter-universe-cosmology-milky 
Topic 01 rotating-model-stability-theory-cosmology Topic 26 how-what-meteor-astronomy-why 
Topic 02 impact-meteorite-origin-chondrite-lunar Topic 27 type-supernovae-neutron-core-nucleosynthesis 
Topic 03 region-maser-source-infrared-line Topic 28 alpha-redshift-field-quasar-absorption 
Topic 04 line-excitation-transition-atomic-irons Topic 29 coronal-region-loop-flux-heating 
Topic 05 binaries-spectroscopy-eclipsing-light-photometric Topic 30 spiral-surface-disk-brightness-gas 
Topic 06 variable-period-cataclysmic-majoris-variation Topic 31 active-nuclei-seyfert-variability-line 
Topic 07 gammaRay-burst-GRB-afterglow-blazar Topic 32 magellanic-cloud-globular-cloud-photometry 
Topic 08 motion-observation-photograph-determination-reference Topic 33 dwarf-group-globular-compact-elliptical 
Topic 09 line-profile-polarization-spectrum-absorption Topic 34 dwarf-lowMass-open-sequence-binaries 
Topic 10 motion-orbit-theory-satellite-peridic Topic 35 supernova-comet-remnant-cygus-coma 
Topic 11 planet-system-extrasolar-satellite-jupiter Topic 36 sky-source-sample-catalog-digital-rosat 
Topic 12 background-cosmic-microwave-power-spectrum Topic 37 dust-circumstence-disk-tauri-envelope 
Topic 13 cosmic-energy-ray-gammaRay-highEnergy Topic 38 spectral-distance-distribution-determination 
Topic 14 oscillation-model-pulsation-mode-delta Topic 39 wave-convection-dynamo-flow-rotating 
Topic 15 nova-outburst-spectrum-cygni-dwarf Topic 40 accretion-disk-simulation-wind-jet 
Topic 16 photometry-cepheids-open-photoelectric-distance Topic 41 acceleration-plasma-wave-shock-radiation 
Topic 17 telescope-space-hubble-imaging-observation Topic 42 data-analysis-method-astronomy-application 
Topic 18 spectra-ultraviolet-analysis-atmosphere-wolfRayed Topic 43 measurement-atmosphere-mars-satellite-venus 
Topic 19 sunspot-rotation-activity-cycle-variation Topic 44 flare-hard-burst-observed-coronal 
Topic 20 abundance-giant-chemical-red-branch Topic 45 interstellar-could-dust-grain-diffuse 
Topic 21 gas-interstellar-hydrogen-neutral-cloud Topic 46 molecular-cloud-core-region-dense 
Topic 22 nebula-planetary-central-orion-bipolar Topic 47 gravitation-lensing-microlens-quasar-weak 
Topic 23 pulsar-X1-PSR-source-transient Topic 48 luminosity-function-relation-distribution-redshift 
Topic 24 source-radio-polarization-object-compact Topic 49 transfer-radiative-method-equation-radiation 

 

Figure 2 shows the topic distribution of these 50 topics for arXiv and WoS over these 20 

years. In arXiv (the blue line), topics were distributed with topic 25 (dark matter research) as the 

one sharing the most proportion throughout the 20-year time span, then followed by topic 12 

(Cosmic Microwave Background (CMB)), topic 28 (Lyman-alpha systems and cosmology), 

topic 7 (Gamma-ray burst (GRB)), and topic 33 (dwarf-group-globular-compact-elliptical). In 

WoS (the red line), the topic distribution was comparably stable with lower amplitude 
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oscillations. The proportion of topic 25 (dark-matter-universe-cosmology-milky) remained high 

during the later years, followed by topics: 31 (active-nuclei-seyfert-variability-line), 28 (alpha-

redshift-field-quasar-absorption), 23 (pulsar-X1-PSR-source-transient) and 40 (accretion-disk-

simulation-wind-jet).  

 

Figure 2. Overview of the topic distribution for astrophysics paper in WoS and arXiv (1992-2011) 

(Note: horizontal axis represents topics, and vertical axis represents the topic distribution probability) 

 

Topic growth patterns 

The regression algorithm was applied to articles in astrophysics collected from WoS 

(166,191) and arXiv (117,913) for the last 20 years (1992-2011). 50 pairs of fitted equations for 

the 50 topics (listed above in Table 1) were extracted. Based on the p-values and R squares, we 

are able to fit most of the equations except for topic 3 in WoS. Since the number of publications 

on topic 3 (region-maser-source-infrared-line) is stationary, we can use its mean as its fitting 

value. Thus, all the data has been fitted. All the regression equations have been evaluated and 

passed the three statistical tests including: the White Test for the heteroscedasticity (White, 

1980), the Bartlett test for the autocorrelation (Bartlett, 1937), and the cointegrating test for the 

long-run equllibrium (Granger, 1986). From the fitted equation curves, four types of topic 

growth patterns have been identified.  
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Both in upward trend. Figure 3 shows two representative curves for 29 topics in both 

WoS and arXiv that show the upward trends. 58.6% of these 29 topics (0, 7, 11, 12, 13, 14, 25, 

27, 28, 33, 35, 37, 38, 40, 42, 46, 48) have the curves similar to topic 0 (blackhole-massive-

accretion-binaries-disk) in which both WoS and arXiv display upward trends such that WoS led 

first and was overtaken by arXiv. 41.4% of 29 topics (2, 6, 8, 10, 19, 29, 39, 41, 43, 44, 45, 49) 

have the curves similar to topic 2 (impact-meteorite-origin-chondrite-lunar) in which WoS and 

arXiv both grow, but at different rates such that WoS is in the dominant leading position 

throughout the whole 20 years. However, arXiv has higher growth rate than that of WoS.  

 

Figure 3. Fitted curves for topic 0 and topic 2 

(Note:  Y axis shows the publications in arXiv and WoS while X axis shows the time from 1992 to 2011) 

 

WoS in upward trend vs. arXiv in downward trend. Figure 4 shows that topic 1 

(rotating-model-stability-theory-cosmology) in WoS has a trend of rising but that it has the 

opposite direction in arXiv, which indicates that the publications of this topic in WoS are 

increasing but the corresponding publications in arXiv are decreasing. This is the only instance 

of such a behavior and it is perhaps due to the spurious identification of topic 1.  
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Figure 4. Fitted curves for topic 1 

(Note:  Y axis shows the publications in arXiv and WoS while X axis shows the time from 1992 to 2011) 

 

WoS in downward trend vs. arXiv in upward trend. Figure 5 shows examples of 

topics that exhibit downward trend in WoS and an upward trend in arXiv. There are 12 topics 

that belong to this type. Among them, 11 topics (3, 9, 15, 17, 20, 23, 26, 31, 32, 34, 36) have 

curves similar to that of topic 15 (telescope-space-hubble-imaging-observation). The WoS curve 

demonstrates a declining trend, while the arXiv curve displays a growing trend even though WoS 

leads temporarily. Topic 5 (binaries-spectroscopy-eclipsing-light-photometric) has no 

intersection between WoS and arXiv during the studied period.  
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Figure 5. Fitted curves for topic 15 and topic 5 

 (Note:  Y axis shows the publications in arXiv and WoS while X axis shows the time from 1992 to 2011) 

 

Both in downward trend. Figure 6 shows two representative curves for eight topics that 

exhibit declining trends in both WoS and arXiv. Seven of these eight topics (16, 18, 21, 22, 24, 

30, 47) have curves similar to topic 21 (gas-interstellar-hydrogen-neutral-cloud) such that WoS 

starts to decline before arXiv. Topic 4 (line-excitation-transition-atomic-irons) displays no 

interaction between WoS and arXiv, which WoS leads.  

 

Figure 6. Fitted curves for topic 21 and topic 4 

 (Note:  Y axis shows the publications in arXiv and WoS while X axis shows the time from 1992 to 2011) 

 

Topic Trends and Popularity 

Because a derivative indicates the slopes of a curve, it is applied here to represent the 

trend of the topics. Different from the publication number, a derivative value (i.e., the slope of a 

curve) indicates the growing/declining rate according to time. The absolute value of the 

derivative measures the “steepness” of the growth/decline, while the minus or plus sign of the 

derivative indicates the direction of “steepness”. For example, a positive derivative means the 
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publication number in the next period will be higher than that in the current period, while a 

negative one implies the opposite.  From the definition of derivatives, ′

/ , when δ → 0. By approximating the derivative by the equation as follows, we could get 

the corresponding derivative of the fitted equations, i.e. the slope of the fitted curves. 

′ 1 /1 (i.e. the difference of order 1 for the prediction data) 

A common property of trends 

Almost all the topics (41 topics) have a common characteristic: as time goes on, the 

topics in arXiv have much higher growth rates than those in WoS (for example, see topic 4 in 

Figure 7) even though in the beginning the number of publications in WoS is higher than that in 

arXiv (for example, see topic 2 in Figure 7). This indicates that publishing papers in arXiv is 

becoming popular. This phenomenon also means that arXiv has much higher potential growth 

power as more people tend to publish their articles in arXiv. 

 

Figure 7. Comparison of slopes from arXiv curves and WoS curves 

(Note:  Y axis shows the publication slopes in arXiv and WoS while X axis shows the time from 1992 to 2011) 
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Analyses of Topic Popularity. Each topic has its own cycle of popularity: becoming 

popular, losing popularity, or reganining popularity. Each popularity lasts a period of time. We 

define the measures of popularity as following: 

 Gaining popularity: In period [t, t+n], the time with the largest addition of new 

elements, i.e. having maximum f’(tm), is defined such that the topic is gaining 

popularity. 

 Losing popularity: If after the maximum point, f’(t) becomes negative, the topic is 

considered to be losing popularity. 

 Regaining popularity: If the curve of topic has a minimum point, then the topic 

might become popular again in few years, so we view this case as becoming re-

popular. 

 Duration of popularity: If exists a t which is a maximum point to f(t), then t-tm is 

the period during which the topic was popular. 

Let us examine the fitted and sloped curves of topic 22 to illustrate the above definitions (Figure 

8). Point B is a gaining popularity point because it has the biggest slope, i.e., the growth rate of 

publications covering topic 22 in arXiv in 1997 is the highest. In other words, that is the time in 

which topic 22 is gaining fastest in popularity. Point C is a losing popularity point (i.e., 

maximum value point) because after that point in 2009 the number of publications of topic 22 in 

arXiv decreases (i.e., the slope of the curve changes to negative from positive), which means this 

topic is losing its attraction.  Point A is a regaining popularity point (i.e., minimum value point) 

because before 1994, the number of publications of this topic decreases and after this year the 

number of publications increases, and the topic becomes popular again in 1997 (we assume that 

no topic is unpopular at the very start). From Figure 8, we can compute the duration of 
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popularity by deducting 1997 from 2009 (the period between losing popularity and gaining 

popularity, i.e., between points C and B).  

  

Figure 8. Example of the mathematical measures of topic popularity 

 (Note: Left graph shows topic 22 fitted values which Y axis indicates the publications in arXiv and WoS while X 

axis shows the time from 1992 to 2011; right graph shows the slopes of topic 22 in arXiv and WoS which Y axis 

indicates the left curves’ slopes while X axis shows the same time period.) 

The derivative curves show that topic 1 in arXiv, topics 5, 6, 9, 15, 16, 17, 18, 20, 23, 26, 

31, 32, 34 in WoS, and topics 4, 21, 22, 24, 30, 47 in both WoS and arXiv are losing popularity 

in recent years. Topic 5 in WoS and topic 22 in arXiv have regained popularity early on, only to 

lose popularity. Topics 1, 8, 10, 39, and 49 in WoS have regained popularity at first and have 

kept growing in popularity. The rest of topics (0, 7, 11, 12, 13, 14, 25, 27, 28, 33, 35, 37, 38, 40, 

42, 46, 48) have consistently been gaining in popularity. Figure 9 displays the examples of topics 

gaining, losing, and regaining popularity. For example, topic 1 in WoS has a minimum point in 

2000, and after that only a positive slope, so it is a topic that has regained popularity; topic 1 in 

arXiv has a maximum point in 2007, and after that has only a negative slope, so it is an example 
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of a topic losing popularity; topic 2 in WoS and arXiv always has a positive slope and is 

therefore gaining popularity throughout the whole period.  

 

Figure 9. Examples of topic popularity 

 (Note: Y axis shows the publication slopes in arXiv and WoS while X axis shows the time from 1992 to 2011) 

 

Popularity duration and leading time (i.e., the duration of which arXiv or WoS leads the 

other for the same topic) can be calculated using the derivative curves. We listed information on 

popularity for all the 50 topics in Table 2 using the above definitions. For example, topic 0 in 

arXiv becomes popular in 1997 while in WoS in 1998, so arXiv leads WoS and the lead time is 

one year. The maximum value points of the topic 0 in both arXiv and WoS appears in 2011, 

meanwhile the slopes of the both curves are not 0, so the popular duration of the topic in arXiv is 

15 years and in WoS is 14 years. For topic 3 in WoS, the maximum value of slope appears in the 

first year, so the topic gains popularity before 1993. The same topic in arXiv becomes popular in 

1999, so the WoS leads arXiv 6 years.  The topic 20 in both WoS and arXiv gains popularity in 

1995, so the lead time is 0. The topic’s losing popularity point in WoS is 2007 while the 

maximum value point with nonzero slope is in 2011, so the duration of popularity in WoS is 13 

years and in arXiv is 17 years. 
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Table 2. Topic Popularity Information of the 50 Topics 

Topics Lead Lag 
Time of becoming 

Popular(Lead) 
Lead Time 

(year) 
Popularity duration 

(Lead) (year) 
Popularity duration 

(Lag)(year) 
0 arXiv WoS 1997 1 >= 15 >=14 
1 WoS arXiv before 1993 - - >=15 
2 WoS arXiv 1994 >=17 >=18 >=1 
3 WoS arXiv before 1993 >=6 >=19 >=13 
4 WoS arXiv 1996 1 6 12 
5 WoS arXiv before 1993 >=6 - >=13 
6 WoS arXiv 1994 1 5 >=17 
7 WoS arXiv 1994 2 >=18 >=16 
8 WoS arXiv 1994 0 3(re-popular) >=18 
9 WoS arXiv before 1993 >=6 >=3 >=14 

10 WoS arXiv before 1993 >=7 >=2(re-popular) >=13 
11 WoS arXiv 2011 0 1 1 
12 arXiv WoS before 1993 >=1 >=19 >=18 
13 WoS arXiv 1994 3 >=18 >=15 
14 WoS arXiv 1999 >=12 >=12 >=1 
15 WoS arXiv before 1993 >=3 >=4 >=16 
16 WoS arXiv before 1993 >=3 - 16 
17 WoS arXiv 1996 3 11 >=13 
18 WoS arXiv before 1993 >=4 >=2 12 
19 WoS arXiv before 1993 >=18 >=19 >=1 
20 WoS arXiv 1995 0 13 >=17 
21 WoS arXiv 1995 1 9 12 
22 WoS arXiv 1994 3 6 13 
23 WoS arXiv 1995 1 11 10 
24 WoS arXiv 1994 1 6 14 
25 arXiv WoS before 1993 >=18 >=19 >=1 
26 arXiv WoS 1996 1 >=16 12 
27 arXiv WoS 1997 >=14 >=15 >=1 
28 arXiv WoS 1995 2 16 >=15 
29 WoS arXiv before 1993 >=18 >=19 >=1 
30 WoS arXiv before 1993 >=2 >=4 14 
31 WoS arXiv 1995 1 10 8 
32 WoS arXiv 1994 1 6 >=17 
33 WoS arXiv 1995 1 14 >=16 
34 WoS arXiv 1997 2 11 >=13 
35 WoS arXiv before 1993 >=3 >=19 >=16 
36 WoS arXiv 1994 1 14 >=17 
37 WoS arXiv 1994 7 >=18 >=11 
38 WoS arXiv 1994 0 >=18 >=18 
39 WoS arXiv 2011 0 >=1 >=1 
40 WoS arXiv before 1993 >=3 >=19 >=16 
41 arXiv WoS 1998 >=13 >=14 >=1 
42 WoS arXiv 1994 >=17 >=18 >=1 
43 WoS arXiv 1997 >=14 >=15 >=1 
44 WoS arXiv 2011 0 >=1 >=1 
45 WoS arXiv 1995 4 4(Re-popular) >=13 
46 arXiv WoS 2002 >=9 >=10 >=1 
47 WoS arXiv 1994 0 9 11 
48 WoS arXiv 1994 1 >=18 >=17 
49 arXiv WoS 1994 >=17 >=18 >=1 

 

(Note: 1. “-” means that the accurate value cannot be calculated during the period of 1992 to 2011. 
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2. in the fourth column, “before 1993” means that the maximum f’(tm) appears in the first year (since we use 

I(1) of prediction data as the  derivative values, the value of 1992 is missed). However, it is not a certainty that the 

topic becomes popular in or before 1993, so we use “before 1993” indicating this condition.) 

 

Domain Evaluation 

The analytical results have been evaluated by a domain expert from astrophysics and are 

summarized as follows. The topics that were identified as having upward trends in both arXiv 

and WoS are topics 0, 7, 11, 12, 13, 14, 25, 27, 28, 33, 35, 37, 38, 40, 42, 46, 48. All of these are 

"hot topics" -- sources of enormous attention in recent years, and the site of many of the most 

important discoveries. Among other things, (1) young astronomers seeking to build a career 

would tend to work in these fields, (2) many groups would be likely to work on similar problems, 

leading to a desire to use to arXiv's instant publishing model to establish priority, (3) papers in 

some of these fields involve "big data" gathered by large collaborations who may wish to use 

arXiv to rapidly present results to funders. The Gamma ray bursts (Topic 7) topic is an 

interesting phenomenon that has had a rapid onset. The community has often tried to synchronize 

observations; where time is of the essence, use of arXiv to disseminate results seems natural. 

The topics which both have upward growth in both WoS and arXiv (but at different rates 

such that WoS is in the dominant leading position throughout the whole 20 years) are topics 2, 6, 

8, 10, 19, 29, 39, 41, 43, 44, 45, 49. These topics are more "traditional" topics. For example, 

Topic 6 (cataclysmic variables) involves the study of a phenomenon that, while unlikely to have 

sensational consequences for the hot topics mentioned above, is perennially popular. Topic 8 

appears to involve a more “traditional” topic that is focused on astrometry; this is a topic that is 

useful to many fields but not of direct interest (though this might change with the increasing role 

of astrometry in extra-solar planets) to astrophysicists. Topic 45 (diffusion on interstellar dust 
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grains) and Topic 49 (problems in radiation transfer) also appear to fall in this “traditional” 

category. Solar and solar system phenomena, including Topic 10 (solar system dynamics), topic 

19 (solar phenomena, sunspots), Topic 29 (solar phenomena, magnetic heating of plasma), Topic 

39 (solar dynamo), Topic 43 (other planets in our solar system), and Topic 44 (solar flares), 

appear here suggesting that a subgroup of astronomers have not turned to pre-prints as much. 

The topics in WoS are increasing but the corresponding publications in arXiv are 

decreasing are Topic 1. Topic 1 may include a somewhat unfashionable field involving rotating 

universe models. If this identification is correct, it is a theoretical field with some senior 

researchers, but any early interest among the younger generation may have died out in the mid-

1990s when cosmological observations began to seriously rule out these speculative models. 

The topics in WoS that have shown downward trend while trending upward in arXiv are 

topics 3, 5, 9, 15, 17, 20, 23, 26, 31, 32, 34, 36. These topics are difficult to identify coherently 

because they appear to be associated with (what some would denigrate as) "stamp collecting" 

fields -- observations of a particular object or small number of objects (globular clusters, radio 

masers (topic 3), polarization of spectral lines (topic 9), variable stars (topic 15), Hubble images 

(topic 17), pulsars (topic 23), meteors (topic 26), Active Galactic Nuclei (topic 31), the 

magellanic cloud (topic 32); or ROSAT images (topic 36); or studies of stellar evolution (topic 

20 and topic 34). It may be the case that authors are using arXiv to publish results examining 

these topics because there is insufficient interest to push through to peer review.  

The topics that show a downward trend in both WoS and arXiv are topics 4, 16, 18, 21, 22, 

24, 30. Some of these topics are clearly superseded by other advances; Topic 16 (Cepheid 

variables) was a crucial part of cosmology until Supernovae and other "standard candles" took 

over. Topic 47 (Gravitational microlensing) is still a very interesting topic (and may well be 
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again), but it had high popularity early on when astrophysicists thought it was possible that dark 

matter was baryonic, or at least in compact object form. After the year 2000, astrophysicists 

believe this to be impossible, so microlensing studies became much less interesting to the wider 

community. Others are "sleepy" in a similar way to the previous section -- e.g., Topic 4 (atomic 

lines), Topic 18 (Wolf-Rayet stars), Topic 22 (planetary nebulae), and Topic 24 (radio 

polarization of compact objects). Topic 21(neutral interstellar hydrogen) is *so* sleepy that it 

might be said that we know everything there is to know. 

 

Conclusion 

This paper analyzes the topic evolution patterns for preprints and traditionally published 

articles in the area of astrophysics. Both arXiv and WoS share similar topics in astrophysics but 

have diverse evolution trends. First, LDA was applied to arXiv and WoS for the time period of 

1992-2011 to identify 50 topics. The regression model has been set up for each of 50 topics to 

calculate their trend curves; four topic development patterns were identified. The first pattern 

(containing 29 topics) signifies that both arXiv and WoS have upward growth tendency, with 

arXiv having stronger growth tendency than WoS. Even though WoS leads at the beginning, 

arXiv surpasses or will surpass eventually. The second pattern (containing 1 topic) shows that 

WoS is in upward trend while arXiv is in a downward trend; this only happens for topic 1 

(rotating-model-stability-theory-cosmology), which remains an isolated case. The third pattern 

(containing 12 topics) found that WoS is in a downward trend while arXiv is in an upward trend. 

The fourth and final pattern (containing 8 topics) identified that both WoS and arXiv are in 

downward tendencies, with WoS having a stronger downward tendency than arXiv. In summary, 

arXiv is getting more popular than WoS and arXiv is leading or will lead in the near future. 
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 Table 2 summarizes the lead-lag situation of WoS and arXiv. WoS leads almost all of 

the topic popularity (41 topics) ranging from one year to six years except with topics 0, 12, 25-28, 

41, 46 and 49. In summary, topics 14, 43, 2, 42, 19, and 29 (6 topics) in WoS and topics 41, 27, 

49 and 25 (4 topics) in arXiv lead the other for more than 10 years; topic 46 in arXiv leads WoS 

by 9 years; topics 3, 5, 9, 10 and 37 (5 topics) in WoS lead these topics in arXiv by 6-7 years; 

topics 13, 15, 16, 17, 22, 35, 40, 18 and 45 (9 topics) in WoS lead these topics in arXiv by 3-4 

years; topics 0, 12, 26 and 28 (4 topics) in arXiv and topics 4, 6, 21, 23, 24, 31, 32, 33, 36, 48, 7, 

30 and 34 (13 topics) in WoS lead the other by 1-2 years; and finally topics 8, 11, 20, 38, 39, 44, 

47 (7 topics) do not lead each other. Compared with arXiv, however, WoS carries much shorter 

popularity duration. The average topic popularity duration of arXiv is about 11 years while that 

of WoS is about 10 years. Only 17 topics’ popularity durations of WoS are larger than those of 

arXiv.  This also suggests that most topics in WoS start losing popularity sooner than those in 

arXiv. It can be clearly seen in our results that the strength of arXiv is growing; this verifies our 

conclusion that arXiv has more potential growth power as more people tend to publish their 

articles in arXiv. It also indicates that arXiv tends to carry popular topics which attract wider 

attention. 

From the lead time we find that most of the topics (total 34) found in both arXiv and 

WoS affect the popularity of each other because when a topic becomes popular in either arXiv or 

WoS, it will become popular in the other in less than 4 years.  Very few topics (such as topics 19, 

25, 42 and 49) become popular in one channel without becoming popular in the other. Only 10 

topics’ lead time in arXiv and WoS are longer than 10 years (i.e. meaning that a topic becomes 

popular in arXiv or WoS but is not popular in the other channel in the next 10 years). In 

summary, although WoS leads the majority of the topics (i.e. 41 out of 50 topics), arXiv has 
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much stronger growth tendency than WoS. Open access has recently become a trend in scientific 

publishing that provides free and easy access to everyone, accelerates knowledge transfer and 

discovery, and enables better opportunities for learning; today’s open access becomes 

tomorrow’s open knowledge. Open access goes beyond articles to enable a link between research 

datasets and reference data entities. Domain-specific research data repositories have been built 

up to ensure sustainable access, provide better data integration, and empower analytics and 

impact assessment.  

This work clearly demonstrates that open access preprints will have stronger growth 

tendency as compared to traditional printed publications in astrophysics. One of the limitations 

of this paper is that the main findings in this paper might be difficult to generalize toward other 

domains. To address this limitation, future work should include: 1) applying author-topic model 

or author-conference topic model to extract topic distributions for authors and journals in order 

to compare the topic evolution for authors and journals; 2) comparing the evolution patterns in 

astrophysics with other domains in science (e.g. Chemistry), social science and humanities; 3) 

studying the usage of datasets in open access articles to identify best practices for sharing and 

integrating publically available research datasets; 4) extending the lead-lag study to co-author 

networks or author citation networks to identify the scholarly communication behavior 

differences in formal vs. informal publishing channels; and 5) investigating the author credit 

distribution differences in these two publishing channels, especially to pay attention to first 

authors or corresponding authors and co-author’s contribution. 
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